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Abstract. We study the quantum entropy of systems that are described by 
general non-Hermitian Hamiltonians, including those which can model the 
eects of sinks or sources. We generalize the von Neumann entropy to the non-
Hermitian case and find that one needs both the normalized and non-normalized 
density operators in order to properly describe irreversible processes. It turns out 
that such a generalization monitors the onset of disorder in quantum dissipative 
systems. We give arguments for why one can consider the generalized entropy 
as the informational entropy describing the flow of information between the 
system and the bath. We illustrate the theory by explicitly studying few simple 
models, including tunneling systems with two energy levels and non-Hermitian 
detuning.
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1. Introduction

One of the most intriguing problems of statistical mechanics is provided by the fact 
that Hamiltonian reversible dynamics is not able to predict any increase of the fine-
grained entropy, as it would be required by the second law of thermodynamics [1–3]. 
However, it has been shown that for classical systems such an increase can be described 
through the adoption of non-Hamiltonian dynamics [4–8] with phase space compress-
ibility [9, 10].

The diculties with the reconciliation of the fine-grained entropy and thermody-
namics remain unchanged when passing to the realm of quantum mechanics. Here, we 
consider the quantum dynamics originating from general non-Hermitian Hamiltonians 
(NH), known as the non-Hermitian approach. This approach is often invoked in order 
to describe quantum systems coupled to sinks or sources and it may arise in a variety 
of contexts, for instance, when studying optical waveguides [11, 12], Feshbach reso-
nances and particles’ disintegration [13–18], multiphoton ionization [19–22], and open 
quant um systems [23–36]. In all such cases, the probability does not have to be con-
served, in general.

In this work, we show that the production of the fine-grained entropy can be natu-
rally predicted within the framework of the non-Hermitian approach. In particular, we 
extend the definition of the Gibbs-von Neumann entropy [37] to the case of systems 
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with non-Hermitian Hamiltonians and introduce a ‘non-Hermitian’ entropy combining 
the normalized and non-normalized density matrix. In order to illustrate the theory, 
we explicitly consider the analytical solution of some models of interest for quantum 
dynamics. Depending on the model studied, we find that the non-Hermitian entropy 
can provide the expected behavior at large times.

The structure of this paper is as follows. In section 2 we give a brief outline of the 
density operator approach for NH systems. In section 3 we introduce a generalization 
of the Gibbs-von-Neumann entropy that is suitable for NH systems, and discuss its 
features. In section 4 we study the NH dynamics of a two-level system in order to illus-
trate the formalism. The discussion of the results and the conclusions are presented in 
section 5.

2. Quantum dynamics with non-Hermitian Hamiltonians

In the theory of open quantum systems the non-Hermitian approach has recently 
acquired a strong popularity since it has a dierent range of applicability from the 
approach based on the Lindblad master equation [38]. In order to sketch how the 
approach unfolds, one can consider a total non-Hermitian Hamiltonian

Ĥ ˆ ˆ= − ΓH i , (1)

where both Ĥ  and Γ̂ are Hermitian (Γ̂ is often called the decay rate operator), the 
Schrödinger equations for the quantum states ⟩|Ψ  and ⟨Ψ| are written as

∂ Ψ = − Ψ = − Ψ − Γ Ψ
i i

H
1

,t
�
H

� �
| 〉 ˆ | 〉 ˆ | 〉 ˆ | 〉 (2)

∂ Ψ = Ψ = Ψ − Ψ Γ
i i

H
1

.t
�

H
� �

〈 | 〈 | ˆ 〈 | ˆ 〈 | ˆ†
 (3)

Upon introducing a non-normalized density matrix

∑Ω = Ψ Ψ ,
k

k
k kPˆ | ⟩⟨ |

 (4)

where Pk are the probabilities of the states ( ⟩ ⟨ )|Ψ Ψ |,k k  that are compatible with the 
macroscopic constraints obeyed by the system, the dynamics can be recast in terms of 
the equation

∂ Ω = − Ω − Γ Ω
i

H ,
1

, ,t
� �

ˆ [ ˆ ˆ ] { ˆ ˆ } (5)

where [,] and ,{ } denote the commutator and anticommutator, respectively. In the con-
text of theory of open quantum systems, the evolution equation for the density opera-

tor Ω̂ eectively describes the original subsystem (with Hamiltonian Ĥ  ) together with 

the eect of environment (represented by Γ̂).
Upon taking the trace of both sides of equation (5), one obtains an evolution equa-

tion for the trace of Ω̂:

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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∂ Ω = − ΓΩTr
2

Tr .t
�

ˆ ( ˆ ˆ ) (6)

Equation (6) shows that NH dynamics does not conserve the probability.
As suggested in [36], one is then led to the introduction of a normalized density 

matrix, defined as

ˆ
ˆ

ˆρ =
Ω

ΩTr
, (7)

that can be used in the calculation of quantum statistical averages of arbitrary opera-
tors χ̂: χ χρ= Tr .t⟨ ⟩ ( ˆ ˆ)

As a result of the definition given in equation (7) and the evolution equations in 
(5) and (6), the normalized density matrix obeys a dynamics ruled by the following 
equation:

� � �
ˆ [ ˆ ˆ] { ˆ ˆ} ˆ ( ˆ ˆ)ρ ρ ρ ρ ρ∂ = − − Γ + Γ

i
H ,

1
,

2
Tr .t (8)

This equation eectively describes the evolution of original subsystem (with Hamiltonian 

Ĥ  ) together with the eect of environment (represented by Γ̂) and the additional term 
that restores the overall probability’s conservation. One can see that due to the last 
term in this equation, the dynamics of the normalized density matrix ρ̂ is nonlinear. A 
similar nonlinearity was found in the evolution equation for the operator averages [39]. 
Moreover, the appearance of nonlinearities in NH-related theories has also been sug-
gested in [40], on the grounds of the Feshbach-Fano projection formalism.

The density operator ρ̂, determined by the solution of equation (8), is bounded and 
allows one to maintain a probabilistic interpretation of the statistical averages of opera-
tors under non-Hermitian dynamics. Nevertheless, the gain or loss of probability associ-
ated with the coupling to sinks or sources are properly described by the non-normalized 
density operator Ω̂. Hence, it turns out that one must use both Ω̂ and ρ̂ in the formal-
ism, one to describe gain or loss of probability and the other to calculate averages. We 
have already verified in our previous work [41] on time correlation functions the need 
to consider both Ω̂ and ρ̂ in the definitions of statistical properties.

3. Quantum entropy

It is well-known that in the Hermitian case the quantum dynamics is unitary and 

defined in terms of a normalized density matrix Ξ̂ obeying the quantum Liouville equa-
tion of motion:

�
ˆ [ ˆ ˆ ]∂ Ξ = − Ξ

i
H , .t (9)

The quantum entropy can be defined as

( ˆ ˆ )≡− Ξ ΞS k Tr ln ,vN B (10)

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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where kB is Boltzmann’s constant [37]. The rate of entropy production, derived from 
the quantum Liouville equation in (9), is

∂ = − ∂ Ξ Ξ =S k Tr ln 0.t tvN B ( ˆ ˆ ) (11)

While the von Neumann entropy in equation (10) is fit to represent the properties 
of equilibrium quantum systems, equation (11) implies that the use of the entropy 
in equation (10) is somewhat more problematic in nonequilibrium dynamics. In fact, 
in order to agree with the entropy increase required by the second law of thermody-
namics, one must resort to modified definitions of entropy, such as those implied by 
coarse-graining (see [42], for example) or by the adoption of relevant definitions of 
entropy [43]. This has even led some authors [9, 10] to invoke more general structures 
[4–8] than Hamiltonian ones in order to define the microscopic dynamics of statistical 
systems.

When a quantum system is coupled to sink or sources, NH dynamics can be used. 
In such a case the straightforward adoption of the von Neumann entropy (10) leads to

ˆ ( ˆ ˆ)ρ ρ ρ≡− = −S k kln Tr ln .vN B B (12)

Equation (12) clearly becomes identical to equation (10) when Γ→ 0ˆ  so that →HĤ ˆ  and 
the dynamics becomes unitary.

If one takes the time derivative of equation (12), uses the evolution equation in (8) 
and the properties of the trace, the following equation for the rate of entropy produc-
tion is obtained:

ρ ρ ρ∂ = Γ + ΓS
k

S
2

Tr ln
2

Tr .t vN
B

vN
� �

( ˆ ˆ ˆ) ( ˆ ˆ) (13)

This equation shows that the non-unitary evolution given by equation (8) provides, in 
general, a non-zero entropy production.

Interestingly, in agreement with our discussion about the important role of both 
Ω̂ and ρ̂ in non-Hermitian dynamics, done in section 2, it is also possible to define 
the entropy as the statistical average of the logarithm of the non-normalized density 
operator:

ρ≡− Ω = − Ω = −
Ω Ω

Ω
S k k kln Tr ln

Tr ln

Tr
,NH B B B⟨ ˆ ⟩ ( ˆ ˆ ) ( ˆ ˆ )

ˆ (14)

with the evolution of Ω̂ naturally given by the linear equation (5). One can expect SvN 
not to be able to catch properly the gain or loss of probability because of its sole reli-
ance on the bounded ρ̂ with its nonlinear corrections. Instead, the operator Ω̂ln  can be 
expected to monitor properly the probability evolution. The rate of change of SNH is 
easily found to be

ρ ρ ρ∂ = Γ Ω + Γ + ΓS
k

S
k2

Tr ln
2

Tr 2 Tr .t NH
B

NH
B

� � �
( ˆ ˆ ˆ ) ( ˆ ) ( ˆ ˆ) (15)

The two entropies are related by the formula

= − ΩS S k ln Tr ,NH vN B ( ˆ ) (16)

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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therefore, the dierence between SNH and SvN is a measure of deviation of ΩTr ˆ  from 
unity.

Another important property of the entropy SNH is that, unlike the von Neumann 
entropy (12), it is not invariant under the complex constant shifts of the Hamiltonian 
that preserve the form of the evolution equation for the normalized density operator 
(8). These constant shifts of the Hamiltonian can be regarded as a kind of ‘gauge’ trans-

formation, see appendix A. Indeed, if one adds to the Γ̂ operator a constant term that 
is proportional to the unity operator Î , then both the normalized density operator (7) 
and the von Neumann entropy (12) are unchanged; however, the NH entropy acquires 
a shift in terms of a linear function of time:

�ˆ ˆ ˆ    
⎧
⎨
⎩

α
α

Γ→Γ+ ⇒
→
→ +

I
S S

S S k t

1

2

,

,
vN vN

NH NH B
 (17)

where α is an arbitrary real constant, see appendix A for details. Such a property can 
facilitate the computing of SNH for some systems. It also sheds light on the fact that 

the NH entropy ‘remembers’ the eects of the complex constant shifts, H Hˆ ˆ ˆ→ + c I0  
(where c0 is an arbitrary complex number).

4. Examples

In order to demonstrate the behavior of the above-mentioned types of entropy, in this 
section we consider few simple models.

4.1. Models with a constant Γ̂ operator

This is the class of models where the Hermitian part of the Hamiltonian can be any 

physically admissible self-adjoint operator Ĥ  whereas the Γ̂ operator is proportional to 
the identity operator:

γΓ = I
1

2
,0�ˆ ˆ (18)

where the parameter γ0 is assumed to be real-valued.
In such models the value of the parameter γ0 does not aect the time evolution of 

the normalized density operator (7). Indeed, equation (8) becomes just the conventional 
quantum Liouville equation:

�
ˆ [ ˆ ˆ]ρ ρ∂ = −

i
H , .t (19)

However, equation (5) reveals that the operator (18) does aect the evolution of the 
operator Ω̂ and of the entropy SNH. Equations (6) and (13) become, respectively:

ˆ ˆγ∂ Ω = − ΩTr Tr ,t 0 (20)

( ˆ ˆ)γ ρ ρ γ∂ = + ≡S k STr ln 0.t vN B 0 0 vN (21)

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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Imposing the initial conditions ˆ ( )Ω =Tr 0 1 and ( ) ( )= =S S0 constvN vN
0 , and also using 

the relation (16), we obtain

ˆ ( ) ( )γΩ = −t tTr exp ,0 (22)

( ) ( )= =S t S const,vN vN
0

 (23)

( ) ( ) γ= +S t S k t.NH vN
0

B 0 (24)

One can see that at large times the trace of Ω̂ either diverges (at negative values of γ0 ) 
or vanishes (at positive values of γ0 ) but the conventional von Neumann entropy SvN 
does not reflect this behaviour in any way. On the other hand, the entropy SNH provides 
more information in this regard. For instance, at positive values of γ0 the trace of Ω̂ 
goes asymptotically to zero, describing the damping of the probability. In such a case, 
SNH grows linearly with time as the thermodynamic entropy is expected to do. Further 
discussion of these features is given in the concluding section.

4.2. Two-level tunneling model with non-Hermitian detuning

Let us consider a two-level model specified by the Hermitian Hamiltonian

�ˆ σ̂= − ∆H x (25)

and the Γ̂ operator

�ˆ ˆγσΓ = ,z (26)

with the total Hamiltonian given by equation (1). The parameters ∆ and γ are real-
valued, with ∆ being also positive. The symbols σx̂ and σ̂z denote the Pauli matrices: 

σ = 0 1
1 0x ( )ˆ , σ =

−
1 0
0 1z ( )ˆ . This model is the non-Hermitian analogue of the well-known 

tunneling model with detuning [44], which finds applications in the pseudo-Hermitian 
and PT-symmetric quantum mechanic [45, 46]. Such kind of models are often used in 
order to eectively describe the dissipative and measurement-related phenomena in 
open quantum-optical and spin systems, such as the direct photodetection of a driven 
TLS interacting with the electromagnetic field [38].

As an initial state we choose the superposition of the ground and excited states

⎛
⎝
⎜

⎞
⎠
⎟ρ = Ω = + − =

−
p e e p g g

p

p
0 0 1

0

0 1
,ˆ( ) ˆ ( ) ( ) (27)

where ⩽ ⩽p0 1 is a free parameter. It is easy to check that this state is pure at =p 0, 1 
and mixed otherwise. Solving the evolution equation (5), with the initial condition (27), 
we obtain the following expression for the non-normalized density operator

µ
σ σΩ = + +f t f t F t I

1

2
2 ,y y z z2

ˆ [ ( ) ˆ ( ) ˆ ( ) ˆ] (28)

where we denoted:

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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( ) ( ) [ ¯ ( ) ˜ ( )]µτ µ µτ γ µτ= −f t psinh cosh sinh ,y (29)

( ) [ ¯ ( ) ˜ ( )]µ µ µτ γ µτ= −f t p cosh 2 sinh 2 ,z (30)

( ) ˜ ( ) ¯ ˜ ( )γ µτ µ γ µτ= − −F t pcosh 2 sinh 2 1,2
 (31)

where τ = ∆t, γ̃ γ= ∆/ , ¯ = −p p2 1, and the value ˜µ γ= − 12  is assumed to be posi-

tive throughout the paper. One can see that for the chosen initial state (27), ΩTr ˆ  is 
invariant under the simultaneous transformation ˜ → ˜γ γ−  and → −p p1 , which will 
manifest itself in the behavior of SNH below. Consequently, the normalized density 
matrix is given by:

ˆ
( )
( )

ˆ
( )
( )

ˆ ˆρ σ σ= + +
f t

F t

f t

F t
I

2

1

2
.

y
y

z
z (32)

The von Neumann entropy can be computed directly from the definition (12). It is 
given by (in units where =k 1B ):

( ) ( ) ( ) ( )( ) ( ) ( ) ( )= − −+ + − −S F t F t F t F tln ln ,vN
2 1 2 1

 (33)

where we denoted ( ) ( ) ( )( ) ⎡⎣ ⎤⎦= ±±F t F t F t1 /i
i

1

2
, i  =  1, 2, and

( ) ( )[ ¯ ( ) ˜ ( )]
[ ¯ ( ) ˜ ( )]
µτ µ µτ γ µτ

µ µ µτ γ µτ
= −
+ −

F t p

p

4sinh cosh sinh

cosh 2 sinh 2 ,

1
2 2

2 2 (34)

( ) ¯ ˜ [ ( ) ˜ ( )]

˜ [( ( ¯ ) ) ( ) ( )]

[ ( ¯ ) ( ¯ ) ]

µ γ µτ γ µτ

γ µ µτ µτ

µ µ

= −

+ + + −

+ − − − +

F t p

p

p p

2 sinh 2 sinh 4

1

2
1 1 cosh 4 4 cosh 2

1

2
1 2 3 .

2
2

2 2 2

4 2 2 2

 (35)

The typical profiles of the entropy (33) for the initial state (27) are shown in figure 1. 
One can see that the entropy SvN tends to zero at large times, regardless of the sign of γ̃.

The NH entropy, defined in equation (14), can be computed using the relation (16). 
It turns out to be (in units where =k 1B ):

[ ( ) ]µ= −S S F tln / ,NH vN
2

 (36)

where SvN is given by (33). One can see that if the von Neumann entropy remains finite 
at large times then the asymptotical properties of SNH are determined by the behavior 
of F(t), i.e.

( )
→ →

µ µτ= − ∝−
∞ ∞

S F tlim ln lim ln 2 ,
t t

NH
2

 (37)

such that SNH tends to a linear function at large times.
The profiles of the entropy (36) for the initial state (27) are shown in figure 2. One 

can see that the entropy decreases with time, regardless of the sign of γ̃, as one can 

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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the trace of the non-normalized density matrix, shown in figure 3, which indicate the 
flow rate of probability to/from the system. For this model, the entropy SNH takes neg-
ative values at large times. This will be discussed in details in the concluding section.

4.3. Two-level tunneling model with non-Hermitian detuning and asymptotically constant 
NH entropy

For the previous two-level model we found out that the NH entropy goes to negative 
values during time evolution. Here we illustrate that this behavior can be changed just 

by adding a constant decay operator to the Γ̂ operator, as explained in the last para-
graphs of section 3.

Thus, the Hermitian part of the model is given by (25) whereas the Γ̂ operator is 
(in units =k 1B ):

Figure 1. Entropy SvN (33) versus τ for the values of γ̃ = −2 (top plot) and γ̃ = 2 
(bottom plot), at the dierent values of p: 0.01 (solid line), 1/4 (dashed line), 1/2 
(dash–dotted line), 3/4 (dotted line) and 0.99 (dash–double–dotted line).

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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Unless otherwise specified, here and in the following, we assume the notation of sec-
tion 4.2. The initial conditions for the evolution equation remain (27).

Using the results given in the appendix A, one can easily show that, for this model, 
both the normalized density ρ̂ and von Neumann entropy SvN are the same as those 
obtained for the model in section 4.2. However, the operator (28) acquires the factor 

( )µ− texp 2 :

ˆ [ ( ) ˆ ( ) ˆ ( ) ˆ]
µ

σ σΩ = + +µ− f t f t F t I
1

2
e 2 .t

y y z z2
2

 (39)

Therefore, using the transformations in equation (17), we obtain

[ ( ) ]µ µτ= − +S S F tln / 2 ,NH vN
2

 (40)

Figure 2. Entropy SNH (36) versus τ for the values of γ̃ = −2 (top plot) and γ̃ = 2 
(bottom plot), at the dierent values of p: 0.01 (solid line), 1/4 (dashed line), 1/2 
(dash–dotted line), 3/4 (dotted line) and 0.99 (dash–double–dotted line).

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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where SvN is given by (33). The asymptotical value is given by

˜( ˜ ¯)→

⎡
⎣
⎢

⎤
⎦
⎥µ

γ γ µ
=

−+∞
S

p
lim ln

2
.

t
NH

2

 (41)

Figure 3. Profiles of ΩTr ˆ , where Ω̂ is given by (28), versus τ for the values of 
γ̃ = −2 (top plot) and γ̃ = 2 (bottom plot), at the dierent values of p: 0.01 (solid 
line), 1/4 (dashed line), 1/2 (dash–dotted line), 3/4 (dotted line) and 0.99 (dash–
double–dotted line).

http://dx.doi.org/10.1088/1742-5468/2016/3/033102
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matter of fact, considering the more general form of the Γ̂ operator, γσ µΓ = + k Iz� �ˆ ˆ ˆ 
(where k is an arbitrary real number), one can establish that the value k  =  1 acts as a 
critical threshold: the NH entropy decreases asymptotically if k  <  1 (see the model in 
section 4.2), while it increases if k  >  1 (see the model in section 4.4).

The profiles of the von Neumann entropy, the NH entropy and the trace of the 
operator Ω̂ for this model are shown in figures 1, 4 and 5, respectively. On can see that, 
as for the model in section 4.2, the entropy SNH may takes negative values for a certain 

range of parameters (when the trace of Ω̂ goes above one). This will be discussed in 
details in the concluding section.

4.4. Two-level tunneling model with non-Hermitian detuning and increasing NH entropy

In the two previous cases, we found that the NH entropy can assume a negative infinite 
value or a constant value. Here we consider another model that, instead, provides an 

Figure 4. Entropy SNH (40) versus τ for the values of γ̃ = −2 (top plot) and γ̃ = 2 
(bottom plot), at the dierent values of p: 0.01 (solid line), 1/4 (dashed line), 1/2 
(dash–dotted line), 3/4 (dotted line) and 0.99 (dash–double–dotted line).
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achieved just by adding a constant term to the Γ̂ operator, as explained in the last 
paragraphs of section 3.

The Hermitian part of this model is still given by equation (25) whereas the Γ̂ opera-
tor is (in units =k 1B ):

� �ˆ ˆ ˆγσ µΓ = + I
3

2
.z (42)

As one can see, the constant term multiplying the identity operator in the definition 

of Γ̂ above is µ�3
2

. Although, this case is qualitatively similar to any other one with 

the constant term’s coecient larger than µ� . The initial conditions for the evolution 
equation remain (27).

Figure 5. Profiles of Ω̂Tr , where Ω̂ is given by (39), versus τ, for the values of 
γ̃ = −2 (top plot) and γ̃ = 2 (bottom plot), at the dierent values of p: 0.01 (solid 
line), 1/4 (dashed line), 1/2 (dash–dotted line), 3/4 (dotted line) and 0.99 (dash–
double–dotted line).
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both the normalized density ρ̂ and von Neumann entropy SvN are the same as for the 
models in sections 4.2 and 4.3, whereas the operator (28) acquires the factor ( )µ− texp 3 :

µ
σ σΩ = + +µ− f t f t F t I

1

2
e 2 .t

y y z z2
3ˆ [ ( ) ˆ ( ) ˆ ( ) ˆ] (43)

Therefore, using (17), we obtain

[ ( ) ]µ µτ= − +S S F tln / 3 ,NH vN
2

 (44)

where SvN is given by (33). The asymptotical value is given by

( )
→ →

µ µτ µτ= − + ∝
+∞ ∞

S F tlim ln lim ln 3 ,
t t

NH
2

 (45)

such that SNH tends to a linear function with a positive coecient at large times.

Figure 6. Entropy SNH (44) versus τ for the values of γ̃ = −2 (top plot) and γ̃ = 2 
(bottom plot), at the dierent values of p: 0.01 (solid line), 1/4 (dashed line), 1/2 
(dash–dotted line), 3/4 (dotted line) and 0.99 (dash–double–dotted line).
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Ω̂ for this model are shown in figures 1, 6 and 7, respectively.

5. Discussion and conclusions

In this paper we have provided a generalized formulation of the quantum fine-grained 
entropy for systems described by non-Hermitian Hamiltonians. We have adopted a 
straightforward generalization of the von Neumann entropy, defined in terms of the 
normalized density matrix (obeying a nonlinear equation of motion), and introduced 
another definition of an entropy, SNH, in terms of the normalized average of the loga-
rithm of the non-normalized density matrix. We have shown that in both cases the 
entropy production is non-zero. However, we have found that it is SNH that properly 

Figure 7. Profiles of Ω̂Tr , where Ω̂ is given by (43), versus τ, for the values of 
γ̃ = −2 (top plot) and γ̃ = 2 (bottom plot), at the dierent values of p: 0.01 (solid 
line), 1/4 (dashed line), 1/2 (dash–dotted line), 3/4 (dotted line) and 0.99 (dash–
double–dotted line).
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captures the physical behavior of the probability and disorder in a system in presence 
of sinks or sources described by non-Hermitian Hamiltonians.

In section 4 we have studied some models in order to illustrate the dierent behav-
ior of the SvN and SNH entropies. In particular, for the models in sections 4.2–4.4 both 
the normalized density operator, ρ̂, and the von Neumann entropy, SvN, do not change 
while the entropy SNH does. We show that at large times the value SNH decreases 
asymptotically for the model of section 4.2, it tends to a finite value for the model in 
section 4.3, and it increases for the model in section 4.4.

The results of the present work, when considered together with our previous studies 
[35, 36, 41], allow us to draw a certain number of conclusions. Non-Hermitian dynamics 
is able to describe in the quantum realm the production of entropy in a way similar to 
what non-Hamiltonian dynamics with phase space compressibility does in the classical 
realm. Non-Hermitian dynamics also seems to need both the normalized density opera-
tor, ρ̂, and non-normalized one, Ω̂, in order to provide a proper statistical theory. The 
non-normalized density operator, defined as a solution of equation (5), captures some 
important features of the decay process, such as the non-conservation of probability in 
the (sub)system and its ‘leakage’ into the surrounding environment. The normalized 
density operator guarantees that the probabilistic interpretation of averages can be main-
tained. In this regard, the entropy SNH combines both operators in a proper way and can 
signal the expected thermodynamic behavior of an open system. The entropy SNH also 
seems more suitable for describing the gain-loss processes that are related to the probabil-
ity’s non-conservation, since it contains information not only about the conventional von 
Neumann entropy SvN but also about the trace of the operator Ω̂, according to the rela-
tion (16). Assuming that SvN is bound at large times, the NH entropy grows when ΩTr ˆ  
decreases, also it takes positive values if Ω̂ <Tr 1 and negative ones otherwise. Hence, 
one can say that SNH describes the flow of information between the system and the bath.

Further studies are needed to understand whether and when SNH may deserve a 
complete quantitative thermodynamic status as well as whether there might be viable 
physical interpretations of a negative entropy (not necessarily given in terms of the 
number of occupied microscopic states).
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Appendix A. Hamiltonian shift transformations and entropy

Following the discussions presented in [35, 36], let us consider the following transfor-

mation of the Γ̂ operator

αΓ = Γ +′ I
1

2
,�ˆ ˆ ˆ (A.1)

where α is an arbitrary real constant and Î  is the unity operator. This transformation 
is a subset of the transformation
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= +′ c I ,0H Hˆ ˆ ˆ (A.2)

c0 being an arbitrary complex number, which is the non-Hermitian generalization of the 
energy shift in conventional quantum mechanics. Therefore, in [35, 36] it was called the 

‘gauge’ transformation of the Hamiltonian (1), whereas the terms of the type c I0 ˆ can 

be called the ‘gauge’ terms.
In [36] it was shown that the equation (8) is invariant under the transformation 

(A.1), therefore, one immediately obtains

ρ ρ= =′ ′S S, ,vN vNˆ ˆ   (A.3)

therefore the von Neumann entropy is not aected by the transformation (A.1). One can 
see that any information regarding the shifting of the total non-Hermitian Hamiltonian 
is lost if one deals solely with the normalized density operator.

However, the evolution equation (6) is not invariant under the shift (A.1). If Ĥ is 
time-independent then, substituting (A.1) into (6), we obtain that the non-normalized 
density acquires an exponential factor:

ˆ ˆ ( )′ αΩ = Ω − texp , (A.4)

therefore, recalling the relation (16), we obtain

ˆ α= − Ω = +′ ′S S k S k tlnTr ,NH vN B NH B (A.5)

which indicates that any lost information about the shifting term in equation (A.2) in 
the total non-Hermitian Hamiltonian, due the normalization procedure in equation (7), 
can be recovered by means of the NH entropy.
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