Offerta Didattica
ENGINEERING AND COMPUTER SCIENCE
COMPUTER SYSTEM DIMENSIONING (yearly)
Classe di corso: LM-32, 18 - Classe delle lauree magistrali in Ingegneria informatica
AA: 2015/2016
Sedi: MESSINA
SSD | TAF | tipologia | frequenza | moduli |
---|---|---|---|---|
ING-INF/05 | Caratterizzante | Libera | Libera | No |
CFU | CFU LEZ | CFU LAB | CFU ESE | ORE | ORE LEZ | ORE LAB | ORE ESE |
---|---|---|---|---|---|---|---|
12 | 4.5 | 0 | 1.5 | 60 | 36 | 0 | 24 |
LegendaCFU: n. crediti dell’insegnamento CFU LEZ: n. cfu di lezione in aula CFU LAB: n. cfu di laboratorio CFU ESE: n. cfu di esercitazione FREQUENZA:Libera/Obbligatoria MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli ORE: n. ore programmate ORE LEZ: n. ore programmate di lezione in aula ORE LAB: n. ore programmate di laboratorio ORE ESE: n. ore programmate di esercitazione SSD:sigla del settore scientifico disciplinare dell’insegnamento TAF:sigla della tipologia di attività formativa TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio
Obiettivi Formativi
Acquisire le nozioni su: - Analisi dei sistemi esistenti valutandone il comportamento dal punto di vista delle prestazioni e della affidabilita'. - Determinazione delle componenti di un sistema per ottimizzarne il comportamento. - Definizioni di piani di test per la valutazione di metriche di comportamento di un sistema.Learning Goals
To learn how to: - Analyse existing systems, evaluating its behaviour in terms of performance and reliability. - Design number and nature of components of a system in order to optimize system behaviour, - Define a test plan for assessment of specific requirements of a system.Metodi didattici
- Lezioni frontali. - Esercitazioni in laboratorio.Teaching Methods
- Lectures. - Practical exercises Laboratory.Prerequisiti
Nozioni di base su: - Teoria delle probabilità e processi stocastici - linguaggi di programmazionePrerequisites
Basics on: - probability theory and stochastic processes - programming languagesVerifiche dell'apprendimento
- Sviluppo di un progetto. - Discussione sugli argomenti in programma.Assessment
Programma del Corso
Performance evaluation: - Basic concepts - Basics on probability theory. Random variables. Probability distribution functions. Operation with random variables. The exponential distributed random variable. - Reliability: definition, failure rate, bath tube curve. Weibull distribution. - Reliability Block Diagram: systems in series, systems in parallel. - Redundancy: component, system, standby, N/K system. - Availability. Availability computation. Mean Time To Failure (MTTF). Mean Time To Repair (MTTR). Availability of systems in series. Availability of parallel system. - Modeling with stochastic Markov chain. - Examples: birth-death processes, availability with different repair policies. - Performability. Reward processes. - Petri nets: formal definition, marking process. Stochastic Petri nets. Generalized stochastic Petri nets. Solution techniques. Stochastic reward nets. Performance and reliability evaluation with Petri nets. - Discrete event simulation. Structure of a discrete event simulator. Random-number generators. Simulation models. Output analysis for a single model: measures of performance and their estimation. Confidence-interval estimation. Output analysis for terminating simulation. Output analysis for steady-state simulation. - Test plan definition. Measurements campaign definition and verification.Course Syllabus
Performance evaluation: - Basic concepts - Basics on probability theory. Random variables. Probability distribution functions. Operation with random variables. The exponential distributed random variable. - Reliability: definition, failure rate, bath tube curve. Weibull distribution. - Reliability Block Diagram: systems in series, systems in parallel. - Redundancy: component, system, standby, N/K system. - Availability. Availability computation. Mean Time To Failure (MTTF). Mean Time To Repair (MTTR). Availability of systems in series. Availability of parallel system. - Modeling with stochastic Markov chain. - Examples: birth-death processes, availability with different repair policies. - Performability. Reward processes. - Petri nets: formal definition, marking process. Stochastic Petri nets. Generalized stochastic Petri nets. Solution techniques. Stochastic reward nets. Performance and reliability evaluation with Petri nets. - Discrete event simulation. Structure of a discrete event simulator. Random-number generators. Simulation models. Output analysis for a single model: measures of performance and their estimation. Confidence-interval estimation. Output analysis for terminating simulation. Output analysis for steady-state simulation. - Test plan definition. Measurements campaign definition and verification.Testi di riferimento: "Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package"; Robin A. Sahner, Kishor S. Trivedi and Antonio Puliafito; Kluwer Academic Publishers, 1996.
"Performability Modelling"; Edited by Boudewijn R. Haverkort, Raymond Marie, Gerardo Rubino, and Kishor Trivedi; Wiley, Chichester, England, 2001.
"Discrete-event system simulation"; Jerry Banks; Pearson Prentice Hall, 2005
Esami: Elenco degli appelli
Elenco delle unità didattiche costituenti l'insegnamento
COMPUTER SYSTEM DIMENSIONING A
Docente: MARCO LUCIO SCARPA
Orario di Ricevimento - MARCO LUCIO SCARPA
Giorno | Ora inizio | Ora fine | Luogo |
---|---|---|---|
Martedì | 09:30 | 11:30 | Dipartimento di Ingegneria, Blocco B, piano 7. |
Giovedì | 09:30 | 11:30 | Dipartimento di Ingengeria, Blocco B, piano 7. |
Note: