Offerta Didattica
INGEGNERIA GESTIONALE
ANALISI MATEMATICA II
Classe di corso: L-9 - Ingegneria industriale
AA: 2022/2023
Sedi: MESSINA
SSD | TAF | tipologia | frequenza | moduli |
---|---|---|---|---|
MAT/05 | Base | Libera | Libera | No |
CFU | CFU LEZ | CFU LAB | CFU ESE | ORE | ORE LEZ | ORE LAB | ORE ESE |
---|---|---|---|---|---|---|---|
9 | 6 | 0 | 3 | 72 | 36 | 0 | 36 |
LegendaCFU: n. crediti dell’insegnamento CFU LEZ: n. cfu di lezione in aula CFU LAB: n. cfu di laboratorio CFU ESE: n. cfu di esercitazione FREQUENZA:Libera/Obbligatoria MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli ORE: n. ore programmate ORE LEZ: n. ore programmate di lezione in aula ORE LAB: n. ore programmate di laboratorio ORE ESE: n. ore programmate di esercitazione SSD:sigla del settore scientifico disciplinare dell’insegnamento TAF:sigla della tipologia di attività formativa TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio
Obiettivi Formativi
Far acquisire conoscenze sul calcolo differenziale e integrale per le funzioni di più variabili e sui metodi risolutivi di alcuni tipi di equazioni differenziali ordinarie. Far acquisire la capacità di applicare le conoscenze maturate nell'ambito dell'Analisi Matematica per analizzare e risolvere problemi dell'ingegneria di base. Far acquisire la capacità di individuare autonomamente gli strumenti e le fonti di dati necessarie all'analisi, alla comprensione e alla risoluzione dei problemi pertinenti l'insegnamento anche attraverso un confronto critico tra diverse possibili soluzioni di uno stesso problema matematico. Far acquisire la capacità di far comprendere anche a interlocutori non specialisti le problematiche trattate nel corso di Analisi Matematica utilizzando un linguaggio scientifico adeguato. Far acquisire la capacità di apprendimento necessaria da consentire l’approfondimento individuale delle conoscenze e per intraprendere studi successivi con un alto grado di autonomiaLearning Goals
Metodi didattici
Il corso è erogato in lezioni frontali ed esercitazioni guidate svolte dal docente durante le quali gli argomenti vengono introdotti dal punto di vista teorico e immediatamente applicati attraverso lo svolgimento di esercizi. Alcune lezioni saranno erogate attraverso l’uso di una tavoletta grafica e il file.pdf generato sarà caricato sulla pagina Moodle del corso. Durante le lezioni verrà utilizzato anche il software gratuito GEOGEBRA attraverso il quale gli Studenti potranno visualizzare “l’oggetto matematico” proposto nell’esercizio e scegliere il metodo più opportuno per studiarlo.Teaching Methods
Prerequisiti
Si richiede la conoscenza dei contenuti erogati nel corso di ANALISI MATEMATICA I.Prerequisites
Verifiche dell'apprendimento
L'esame consiste in una prova scritta, seguita dalla prova orale. Durante la prova scritta si chiede di eseguire lo svolgimento completo di cinque/sei esercizi. Gli argomenti e il livello di difficoltà degli esercizi corrispondono al programma svolto e ai testi di riferimento indicati. Il tempo assegnato per la prova scritta è di due ore. La valutazione della prova scritta è fatta in trentesimi. La prova scritta si ritiene superata se la valutazione complessiva non è inferiore a 15/30. Superata la prova scritta, essa ha validità per tutto l’anno accademico entro il quale dovrà essere sostenuta la prova orale. La prova orale è incentrata sugli argomenti trattati durante il corso (definizioni, esempi rilevanti, teoremi, dimostrazioni, applicazioni, collegamenti tra i vari argomenti.). Essa ha il duplice scopo di verificare il livello di conoscenza e di comprensione dei contenuti del corso e di valutare l'autonomia di giudizio, la capacità di apprendimento, l'abilità comunicativa e proprietà di linguaggio scientifico e indi valutare le facoltà logico-deduttive acquisite dallo studente. Il voto finale è espresso in trentesimi e tiene conto della valutazione ottenuta durante la prova scritta e durante la prova orale. Durante lo svolgimento del corso sono previste due prove scritte in itinere. Lo studente che supera le prove in itinere è esonerato dalla prova scritta e può direttamente sostenere la prova orale. Le prove in itinere sono relative agli argomenti trattati durante il corso e si tengono rispettivamente a metà e a fine corso (in date che vengono concordate durante le lezioni con gli studenti). A ciascuna prova si assegna una valutazione in trentesimi. La prova scritta è superata se la media delle due prove di verifica è pari o maggiore a 15/30. Durante le prove scritte è possibile utilizzare una calcolatrice e consultare il libro di testo.Assessment
Programma del Corso
-CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI: Elementi di topologia in R^n: distanza tra due punti, altre metriche in R^n, intorno di un punto, punto esterno, punto interno, punto di frontiera, punto di accumulazione. Insiemi aperti e insiemi chiusi, insiemi limitati, insiemi connessi, insiemi compatti. Definizione di limite di una funzione. Condizione necessaria per l'esistenza del limite. Definizione di funzione continua. Teoremi sulle funzioni continue. Derivate parziali di una funzione, teorema di Schwarz. Differenziabilità di una funzione. Condizione necessaria di differenziabilità. Differenziale di una funzione. Relazione tra differenziabilità e continuità. Relazione tra differenziabilità e derivabilità. Funzione composta, teorema sull'esistenza della derivata della funzione composta. Derivata direzionale di una funzione, teorema sull'esistenza delle derivate direzionali. Applicazioni fisiche del calcolo differenziale. Teorema del differenziale totale. Teorema di Lagrange. Teorema sulle funzioni a gradiente nullo. -ESTREMI RELATIVI ED ASSOLUTI DI UNA FUNZIONE DI PIÙ VARIABILI: Cenni sulle forme quadratiche in R^{n}: forme quadratiche semidefinite positive, negative, forme quadratiche definite positive, negative. Estremi relativi di una funzione: definizione, punti di estremo relativo proprio, condizione necessaria del primo ordine, condizione necessaria del secondo ordine, condizione sufficiente del secondo ordine per i punti di estremo relativo proprio. Ricerca degli estremi relativi di una funzione. Ricerca degli estremi assoluti di una funzione. -CURVE REGOLARI E INTEGRALI CURVILINEI DI PRIMA SPECIE: Rappresentazioni parametriche equivalenti, curve regolari in R^n, traccia di una curva, curve chiuse, curve semplici, versore tangente, versore normale. Lunghezza di una curva. Ascissa curvilinea. Integrale curvilineo di una funzione. Baricentro di una curva regolare. -FORME DIFFERENZIALI LINEARI E INTEGRALI CURVILINEI DI SECONDA SPECIE: Funzioni lineari su R^n. Forme differenziali lineari in R^n. Integrale di una forma differenziale. Forme differenziali esatte. Primitive di una forma differenziale esatta. Condizione necessaria di esattezza. Criterio di esattezza. Forme differenziali chiuse. Relazione tra forme differenziali chiuse e forme differenziali esatte. Forme differenziali chiuse su insiemi aperti semplicemente connessi. -CALCOLO INTEGRALE PER FUNZIONI DI PIÙ VARIABILI: Integrale doppio. Formule di riduzione. Cambiamento di variabili in un integrale doppio: coordinate polari. Baricentro di un dominio. Applicazione del teorema di Guldino per il calcolo del volume di un solido di rotazione. Integrale triplo. Integrazione per fili e per strati. Cambiamento di variabili in un integrale triplo: coordinate sferiche e coordinate cilindriche. Formule di Gauss-Green, teorema della divergenza nel piano, formula di Stokes, formule per il calcolo dell'area di un dominio regolare. -EQUAZIONI DIFFERENZIALI ORDINARIE: Equazioni differenziali ordinarie del primo ordine in forma normale. Equazioni a variabili separabili, equazioni di tipo omogeneo. Proprietà dell’integrale generale di un’equazione lineare omogenea o completa e metodo risolutivo. Equazioni di Bernoulli. Equazioni differenziali lineari di ordine n a coefficienti costanti omogenee e complete. Equazioni di Eulero.Course Syllabus
Testi di riferimento:
-M. Bramanti, C. D. Pagani, S. Salsa, “Analisi Matematica 2”, Zanichelli Editore
-N.Fusco,P.Marcellini, C.Sbordone, “Lezioni di Analisi Matematica due”, Zanichelli Editore
-P. Marcellini, C.Sbordone,”Esercitazioni di matematica Vol 2 (parti 1 e 2), Zanichelli Editore
-M. Bertsch, R. Dal Passo, L. Giacomelli, “Analisi matematica”, McGraw-Hill
-Dispense a cura del docente
Esami: Elenco degli appelli
Elenco delle unità didattiche costituenti l'insegnamento
Docente: ANTONIA CHINNI'
Orario di Ricevimento - ANTONIA CHINNI'
Giorno | Ora inizio | Ora fine | Luogo |
---|---|---|---|
Martedì | 14:30 | 15:30 | Dipartimento di Ingegneria, studio n° 961. In alternativa è possibile contattare il docente per e-mail o su TEAMS |
Mercoledì | 14:30 | 15:30 | Dipartimento di Ingegneria, studio n° 961. In alternativa è possibile contattare il docente per e-mail o su TEAMS |
Note: