Offerta Didattica

 

INFORMATICA

MATHEMATICS FOR DATA ANALYSIS

Classe di corso: L-31 - Scienze e tecnologie informatiche
AA: 2022/2023
Sedi: MESSINA
SSDTAFtipologiafrequenzamoduli
MAT/07BaseLiberaLiberaNo
CFUCFU LEZCFU LABCFU ESEOREORE LEZORE LABORE ESE
64024824024
Legenda
CFU: n. crediti dell’insegnamento
CFU LEZ: n. cfu di lezione in aula
CFU LAB: n. cfu di laboratorio
CFU ESE: n. cfu di esercitazione
FREQUENZA:Libera/Obbligatoria
MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli
ORE: n. ore programmate
ORE LEZ: n. ore programmate di lezione in aula
ORE LAB: n. ore programmate di laboratorio
ORE ESE: n. ore programmate di esercitazione
SSD:sigla del settore scientifico disciplinare dell’insegnamento
TAF:sigla della tipologia di attività formativa
TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio

Obiettivi Formativi

Conoscenza di tecniche e metodologie matematiche per l’estrazione di informazione da dati massivi (analisi delle componenti principali, analisi fattoriale, procedure di fitting e interpolazione) e per il processo di apprendimento dai dati.

Metodi didattici

Lezioni frontali ed esercitazioni in presenza. La presentazione di casi di studio sarà svolta mediante l'ausilio di software scientifico.

Prerequisiti

Calcolo differenziale di funzioni reali di variabile reale, numeri complessi.

Verifiche dell'apprendimento

L'esame, orale, è volto a verificare il grado di raggiungimento degli obiettivi formativi: livello di conoscenza degli argomenti teorici e capacità di impostare e risolvere problemi.

Programma del Corso

Elementi di algebra lineare: spazi vettoriali, vettori e matrici, operazioni, norme vettoriali e matriciali, dipendenza e indipendenza lineare, determinante, rango di una matrice, inversa di una matrice, base di uno spazio vettoriale, cambiamento di base, spazi Euclidei, operatori lineari, sistemi lineari, autovalori e autovettori. diagonalizzazione di matrici, forme quadratiche. Distanze e primi vicini: metriche, distanze Lp, distanza Euclidea, distanza di Mahalanobis, distanza del coseno, distanza angolare, distanze tra insiemi e stringhe, distanza di Jaccard, distanze di modifica tra stringhe, modelli della borsa di parole, k-gramma. Elementi di Statistica descrittiva. Elementi di Analisi Combinatoria. Elementi di teoria della probabilità: spazi di probabilità, assiomi della probabilità, probabilità condizionata e indipendenza, probabilità assoluta, teorema di Bayes, variabili aleatorie, densità di probabilità, principali funzioni di distribuzione. Fitting: metodo dei minimi quadrati, regressione lineare semplice, regressione lineare con più variabili esplicative, regressione polinomiale, fitting di dati con un modello. Inferenza statistica: campionamento, stime di parametri, test d'ipotesi, test Chi quadrato. Analisi delle componenti principali: dati matriciali, proiezioni, decomposizione ai valori singolari di matrici, applicazioni con MATLAB.

Testi di riferimento: 1) Jeff M. Phillips. Mathematical foundations for data analysis, 2019. Disponibile online all'url http://www.cs.utah.edu/~jeffp/M4D/M4D.html 2) Gilbert Strang. Linear algebra and learning from data. Wellesey-Cambridge Press, 2019.

Elenco delle unità didattiche costituenti l'insegnamento

Docente: MATTEO GORGONE

Orario di Ricevimento - MATTEO GORGONE

Dato non disponibile
  • Segui Unime su:
  • istagram32x32.jpg
  • facebook
  • youtube
  • twitter
  • UnimeMobile
  • tutti