Offerta Didattica

 

PHYSICS

MODELLI MATEMATICI PER SISTEMI BIOLOGICI

Classe di corso: LM-17 - Fisica
AA: 2021/2022
Sedi: MESSINA
SSDTAFtipologiafrequenzamoduli
MAT/07Affine/IntegrativaLiberaLiberaNo
CFUCFU LEZCFU LABCFU ESEOREORE LEZORE LABORE ESE
64024824024
Legenda
CFU: n. crediti dell’insegnamento
CFU LEZ: n. cfu di lezione in aula
CFU LAB: n. cfu di laboratorio
CFU ESE: n. cfu di esercitazione
FREQUENZA:Libera/Obbligatoria
MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli
ORE: n. ore programmate
ORE LEZ: n. ore programmate di lezione in aula
ORE LAB: n. ore programmate di laboratorio
ORE ESE: n. ore programmate di esercitazione
SSD:sigla del settore scientifico disciplinare dell’insegnamento
TAF:sigla della tipologia di attività formativa
TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio

Obiettivi Formativi

Comprensione dei principali strumenti matematici, locali e globali, analitici e geometrici, necessari allo studio dei modelli meccanici e biologici descritti da equazioni e sistemi differenziali ordinari. Studio dei principali modelli di evoluzione di una o più popolazioni interagenti, sia nell'ambito discreto che nel continuo. Modellizzazione di fenomeni fisici,biologici e medici.

Learning Goals


Metodi didattici

Il corso, al fine di raggiungere gli obiettivi formativi previsti, si svolge prevalentemente attraverso lezioni frontali. Sono inoltre previste esercitazioni in aula  con lo scopo di stimolare l’approccio ai problemi con autonomia e senso critico.  

Teaching Methods


Prerequisiti

I prerequisiti richiesti quelli forniti dai corsi di base della Laurea triennale in matematica

Prerequisites


Verifiche dell'apprendimento

L'esame, orale, è incentrato sugli argomenti trattati durante il corso. Inoltre,  viene completato con la discussione di un articolo scientifico, scelto tra quelli suggeriti dal docente, il cui argomento rientra tra le tematiche  contenute nel programma svolto. L'esame è volto a verificare il grado di raggiungimento degli obiettivi formativi: livello di conoscenza degli argomenti teorici e capacità di impostare e risolvere problemi. Il voto finale è espresso in trentesimi.

Assessment


Programma del Corso

MODELLI PER UNA SINGOLA SPECIE. Modelli di popolazione continua. Crescita esponenziale Modello logistico. Effetto Allee. Equazione logistica in epidemiologia. Modelli di popolazione con prelievo (harvesting). Modelli di popolazione discreti. Modelli lineari. Analisi dell’equilibrio. Modelli continui e discreti con ritardo. MODELLI CONTINUI PER POPOLAZIONI INTERAGENTI. Equazione di Lotka-Volterra. Equilibri e linearizzazione. Comportamento qualitativo delle soluzioni nei sistemi lineari. Soluzioni periodiche e cicli limite. Modelli continui per due popolazioni interagenti. Specie in competizione. Sistemi preda-predatore. Modelli di Kolmogorov. Mutualismo. Interazione tra specie. Specie invadenti e coesistenza. Modelli per due specie con prelievo. Modelli di ecosistemi chiusi. MODELLI DI POPOLAZIONI CON STRUTTURA. Modelli discreti lineari. Modelli continui lineari. Modelli di popolazioni strutturate per età. MODELLI DI TRASMISSIONE DELLE MALATTIE. Modello delle epidemie. Modelli più complicati delle epidemie (modelli con trattamento, modello dell’influenza, modello con isolamento e quarantena). Modelli per malattie endemiche. Un modello per malattie senza immunità (SI). Modello con immunità temporanea (SI(R)). AIDS: Modello di trasmissione del virus HIV. Modello con ritardo per l’infezione HIV con terapia farmacologica.

Course Syllabus


Testi di riferimento: J. Murray, Mathematical Biology, Springer 2002. Gaeta, Modelli Matematici in Biologia, Springer 2007. G.Fred Brauer Carlos Castilo-Chavez. Mathematical models in population biology and epidemiology. Second Edition. Springer (2012).

Elenco delle unità didattiche costituenti l'insegnamento

Docente: PATRIZIA ROGOLINO

Orario di Ricevimento - PATRIZIA ROGOLINO

GiornoOra inizioOra fineLuogo
Lunedì 15:00 16:00Studio. Dipatimento di Matematica ed Informatica (Blocco A)
Mercoledì 12:00 13:30Studio. Dipartimento di Matematica ed Informatica (Blocco A)
Giovedì 15:00 16:00Studio. Dipartimeno di Matematica ed Informatica (Blocco A)
Note:
  • Segui Unime su:
  • istagram32x32.jpg
  • facebook
  • youtube
  • twitter
  • UnimeMobile
  • tutti