Offerta Didattica

 

ENGINEERING AND COMPUTER SCIENCE

ADVANCED TECHNIQUES OF DATA ANALYSIS

Classe di corso: LM-32, 18 - Classe delle lauree magistrali in Ingegneria informatica
AA: 2019/2020
Sedi: MESSINA
SSDTAFtipologiafrequenzamoduli
ING-INF/05CaratterizzanteLiberaLiberaNo
CFUCFU LEZCFU LABCFU ESEOREORE LEZORE LABORE ESE
64024824024
Legenda
CFU: n. crediti dell’insegnamento
CFU LEZ: n. cfu di lezione in aula
CFU LAB: n. cfu di laboratorio
CFU ESE: n. cfu di esercitazione
FREQUENZA:Libera/Obbligatoria
MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli
ORE: n. ore programmate
ORE LEZ: n. ore programmate di lezione in aula
ORE LAB: n. ore programmate di laboratorio
ORE ESE: n. ore programmate di esercitazione
SSD:sigla del settore scientifico disciplinare dell’insegnamento
TAF:sigla della tipologia di attività formativa
TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio

Obiettivi Formativi

Il corso di Advanced Techniques of Data Analysis si propone di fornire agli allievi i concetti di base dellanalisi dei dati e dellapprendimento automatico. Verranno trattati gli aspetti dellapprendimento supervisionato e non supervisionato mediante lo studio delle basi teoriche e la loro applicazione a problemi reali. Il corso intende fornire anche agli studenti le capacità pratiche per lutilizzo dei principali ambienti di sviluppo di algoritmi di machine learning quali Keras e TensorFlow.

Metodi didattici

Lezioni frontali. Esercitazioni in aula.

Prerequisiti

Sono richieste conoscenze di statistica, algebra lineare, programmazione Python.

Verifiche dell'apprendimento

Il corso prevede una prova orale atta a valutare il livello di apprendimento raggiunto. Inoltre, è richiesta la risoluzione di un problema reale (sotto forma di tesina) da presentare e discutere il giorno della prova orale. L'argomento della tesina dovrà essere concordato con il docente.

Programma del Corso

Introduzione al Data Analytics e al Machine Learning. Il concetto di apprendimento supervisionato e non-supervisionato. Il primo esempio di classificatore: k-Nearest neighbor. Classificazione mediante modelli generativi. La distribuzione gaussiana univariata e multivariata. Approcci generativi per la classificazione. Regressione Lineare. Regularized Linear Regression: Ridge Regression. Regularized Linear Regression: Lasso Regression. Logistic Regression. Learning curves. Overfitting. Neural Networks. Support Vector Machines. Random forests. Metodi di Apprendimento non supervisionato. Clustering. Metodi di riduzione della dimensionalità: PCA e SVD. Introduzione al Deep learning. Deep Neural Networks. Reifnrocement Learning

Testi di riferimento: Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning (2nd edition).

Elenco delle unità didattiche costituenti l'insegnamento

Docente: DARIO BRUNEO

Orario di Ricevimento - DARIO BRUNEO

GiornoOra inizioOra fineLuogo
Martedì 15:00 17:00Dipartimento di Ingegneria - 7° piano - blocco B
Note:
  • Segui Unime su:
  • istagram32x32.jpg
  • facebook
  • youtube
  • twitter
  • UnimeMobile
  • tutti