Offerta Didattica
MATEMATICA
MECCANICA RAZIONALE
Classe di corso: L-35 - Scienze matematiche
AA: 2015/2016
Sedi: MESSINA
SSD | TAF | tipologia | frequenza | moduli |
---|---|---|---|---|
MAT/07 | Base | Libera | Libera | No |
CFU | CFU LEZ | CFU LAB | CFU ESE | ORE | ORE LEZ | ORE LAB | ORE ESE |
---|---|---|---|---|---|---|---|
12 | 8 | 0 | 4 | 104 | 64 | 0 | 40 |
LegendaCFU: n. crediti dell’insegnamento CFU LEZ: n. cfu di lezione in aula CFU LAB: n. cfu di laboratorio CFU ESE: n. cfu di esercitazione FREQUENZA:Libera/Obbligatoria MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli ORE: n. ore programmate ORE LEZ: n. ore programmate di lezione in aula ORE LAB: n. ore programmate di laboratorio ORE ESE: n. ore programmate di esercitazione SSD:sigla del settore scientifico disciplinare dell’insegnamento TAF:sigla della tipologia di attività formativa TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio
Obiettivi Formativi
Il corso si propone di studiare il moto e l’equilibrio di fondamentali modelli matematici che approssimano nell’ambito della teoria newtoniana i sistemi fisici, in uno schema logico-deduttivo. Il corso ha la finalità di insegnare a costruire un modello per lo studio dei fenomeni, ad analizzare il modello con mezzi matematici ed a tradurre poi i risultati nelle applicazioni.Learning Goals
The course aims to study the motion and the equilibrium of fundamental mathematical models that approximate physical systems in the context of the Newtonian theory, in a logical and deductive scheme. The course aims to teach how to build a model for the study of phenomena, to analyze the model with mathematical means and then translate the results into applications.Metodi didattici
Lezioni teoriche ed esercitazioni guidate.Teaching Methods
Theoretical and practical lessons.Prerequisiti
Calcolo differenziale ed integrale. Elementi di geometria differenziale delle curve e delle superfici.Prerequisites
Differential and integral calculus. Elements of differential geometry of curves and surfaces.Verifiche dell'apprendimento
L’esame consta di una prova scritta e di una prova orale. La prima verte sulla risoluzione di alcuni problemi inerenti vari argomenti trattati nel corso, con particolare riferimento alla dinamica e statica dei sistemi olonomi. La seconda ha lo scopo di accertare la maturità raggiunta dallo studente nell’acquisizione dei vari concetti. Durante il corso vengono effettuate tre prove di verifica che permettono, se superate, di essere esonerati dalla prova scritta in uno dei tre appelli della prima sessione d'esami.Assessment
The exam consists of a written test and an oral exam. The first concerns the resolution of some problems concerning the various topics covered in the course, with particular reference to dynamic and static of holonomic systems. The second has the aim to ascertain the maturity reached by the student in the acquisition of the various concepts. During the course some verification tests are performed that allow, if passed, to be exempted from the written test in one of three appeals of the first session of exams.Programma del Corso
Vettori. Rappresentazione intrinseca ed estrinseca dei vettori liberi. Spazi vettoriali lineari. Prodotto scalare, vettore e misto. Doppio prodotto vettore. Rappresentazione cartesiana delle operazioni tra vettori. Simboli di Kronecker e di Levi-Civita. Operazioni tra vettori in notazione indiciale. Cambiamenti di base. Funzioni vettoriali. Elementi di geometria differenziale delle curve sghembe e delle superfici. Formule di Frenet. Sistemi di vettori applicati. Risultante e momento polare risultante. Momento assiale. Coppia. Riducibilità di un sistema di vettori applicati. Asse centrale. Centro di un sistema di vettori applicati paralleli. Cinematica del punto. I concetti di spazio e tempo. Vettore posizione e vettore spostamento. Velocità ed accelerazione. Moti rettilinei uniformi e ad accelerazione costante. Moti piani. Velocità ed accelerazione radiale e traversa. Velocità ed accelerazione areale. Moto circolare. Moto armonico. Moto composto. Moti centrali. Moto dei pianeti. Cinematica dei corpi rigidi. Concetti introduttivi sui sistemi materiali. Movimento rigido e corpo rigido. Velocità e accelerazione in un moto rigido. Formule di Poisson. Moti rigidi particolari. Moto rotatorio. Moto elicoidale. Moto polare. Moto rigido piano. Caratteristiche del vettore velocità angolare. Angoli di Eulero. Teorema di Mozzi. Cinematica relativa.Moti relativi. Principio di Galileo. Teorema di Coriolis. Moti rigidi relativi. Teorema di Resal. Mutuo rotolamento di due superfici rigide. Curve polari. Cinematica dei sistemi vincolati. Vincoli e loro classificazione. Grado di libertà di un sistema materiale. Coordinate lagrangiane. Sistemi olonomi ed anolonomi. Spostamenti possibili, elementari e virtuali. Geometria delle masse. Massa, momento statico e baricentro di un sistema materiale. Proprietà del baricentro. Momento di inerzia di un sistema materiale. Teorema di Huygens-Steiner. Legge di variazione del momento di inerzia rispetto a rette concorrenti. Tensore d’inerzia ed ellissoide principale d’inerzia. Giroscopio. Cinematica delle masse. Quantità di moto, momento angolare ed energia cinetica di un sistema materiale. Forze d’inerzia. Energia cinetica e momento angolare di un corpo rigido. Moto relativo al baricentro e teoremi di König. Forze, lavoro ed energia. Classificazione delle forze. Definizione di lavoro elementare e virtuale. Forze conservative. Lavoro di una sollecitazione. Lavoro virtuale di una sollecitazione agente su un corpo rigido e su un sistema olonomo. Dinamica del punto. I principi della dinamica. Dinamica del punto in un sistema di riferimento non inerziale. Dinamica terrestre. Punto materiale vincolato. Postulato delle reazioni vincolari. Leggi di Coulomb-Morin. Coni di attrito. Moto di un punto su una superficie fissa o una curva fissa. Equazioni intrinseche. Statica del punto. Equilibrio di un punto materiale. Statica del punto libero e del punto vincolato ad una superficie o ad una curva. Equilibrio rispetto ad un riferimento non inerziale. Dinamica dei sistemi. Equazioni cardinali della dinamica. Teorema delle forze vive. Vincoli perfetti. Integrali primi. Dinamica del corpo rigido. Equazioni di Eulero. Moti alla Poinsot. Moto di un corpo rigido con un asse fisso e liscio ed il problema dell’equilibratura del rotore. Statica dei sistemi. Equazioni cardinali della statica. Principio dei lavori virtuali. Statica del corpo rigido. Stabilità dell’equilibrio. Equilibrio di un sistema olonomo. Elementi di Meccanica analitica. Principio di d’Alembert. Equazioni di Lagrange. Equazioni di Lagrange per sistemi conservativi. Integrali primi tipici di un sistema lagrangiano. Piccole oscillazioni di un sistema nell’intorno di una configurazione di equilibrio stabile.Course Syllabus
Vectors. Intrinsic representation of vectors. Vectorial algebra. Extrinsic representation of vectors. Linear vector spaces. Scalar product. Projection of a vector on a line oriented. Vectorial product. Mixed product and double vectorial product. Cartesian representation of vectorial operations. Kronecker's and Levi-Civita's symbols. Vectorial operations in indicial notation. Relationship between the symbols of Kronecker and Levi-Civita. Change of basis. Vectorial functions. Differential geometry of curves. Frenet formulas. Elements of differential geometry of surfaces. Applied vectors. Systems of applied vectors. Resultant and polar moment resultant. Axial moment. Couple. Elementary operations. Reduction of an applied vector system. Central axis. Plane vector system. Parallel vector system. Kinematics of a point. The concepts of space and time. Position and displacement vector. Velocity, acceleration and their properties. Uniform and rectilinear motions with constant acceleration. Plane motions. Circular motions. Harmonic motions. Central motions. Motion of the planets. Kinematics of rigid systems. Rigid motions and rigid bodies. Velocity and acceleration in a rigid motion. Poisson's formulas. Classification and Properties of rigid motions. Euleroâ angles. Motion acts. Mozziâs Theorem. Relative kinematics. Relative motions. Velocity addition theorem. Relative derivation theorem. Coriolis theorem. Rigid motion relative. Angular velocity addition theorem. Resalâ theorem. Mutual rolling of two surfaces. Polar trajectories in rigid motions. Kinematics of constrained systems. Constraints and their classification. Analytic description. Degree of freedom. Holonomic systems. Possible, elementary and virtual displacement. Geometry of masses. Mass, static moment and center of mass for a discrete or a continuous system. Properties of centre of mass. Inertial momentum. Huygens-Steiner theorem. Inertial momentum with respect to current axes. Inertial tensor and ellipsoid of inertia. Gyroscopes. Kinematics of the masses. Momentum, angular momentum and kinetic energy of a material system. Inertial forces. Kinetic energy and angular momentum of a rigid bodies. Motion relative to the center of gravity and Königâs theorems. Forces, work and energy. Classifications of forces. Definition of elementary and effective work. Conservative forces. Force systems and work of a system of a force system. Virtual work for rigid bodies and for holonomic systems. Dynamics of points. Introductory concepts. Inertia principle. Newton's laws. Principles of mechanics. Dynamics of a point with respect to a non-inertial frame. Terrestrial dynamics. Constraints. Coulomb-Morinâ laws. Cones of friction. Motion of a point on a fixed surface or on a fixed curve. Intrinsic equations. Statics of points. Equilibrium of a material point. Statics of a point constrained to a surface or on a curve. Equilibrium with respect to a non-inertial frame. Dynamics of systems .Cardinal equations of dynamics. Energy theorem. Perfect constraints. First integrals. Rigid body dynamics. Euler equations. Poinsotâs motion. Motion of a rigid body with a fixed axis and dynamical balancing. Statics of material systems. Cardinal equations of statics. Virtual workâs principle. Statics of rigid bodies. Equilibrium stability. Equilibrium of a holonomic system. Elements of analytical mechanics. D'Alembert principle. Genesis of Lagrange equations. Lagrange equations for conservative systems. First integrals of a Lagrangian system. Small oscillations in the neighbourhood of a stable equilibrium position.Testi di riferimento: T. Brugarino, S. Giambò, A. Greco, P. Pantano, S. Rionero, Vettori e tensori, Editel, Commenda di Rende, 1987.
T. Brugarino, S. Giambò, P. Pantano, Meccanica razionale. Cinematica e dinamica, 1986, Meccanica razionale. Dinamica dei sistemi e statica, 1988, Editel, Commenda di Rende.
T. Levi-Civita, U. Amaldi, Lezioni di Meccanica razionale, vol. I, Zanichelli, Bologna, 1991.
G. Lampariello, Lezioni di Meccanica razionale, Edizioni Ferrara, Messina, 1960.
G. Grioli, Lezioni di Meccanica razionale, Edizioni Libreria Cortina, Padova, 1994.
S. Bressan, A. Grioli, Esercizi di Meccanica razionale, Edizioni Libreria Cortina, Padova, 1979.
F. Bampi, M. Benati, A. Morro, Problemi di MECCANICA RAZIONALE, Edizioni Culturali Internazionali Genova, 1988.
A. Muracchini, T. Ruggeri, L. Seccia, Esercizi e temi d’esame di Meccanica razionale, Progetto Leonardo, Bologna, 1997.
Esami: Elenco degli appelli
Elenco delle unità didattiche costituenti l'insegnamento
MECCANICA RAZIONALE
Docente: ANNUNZIATA PALUMBO
Orario di Ricevimento - ANNUNZIATA PALUMBO
Giorno | Ora inizio | Ora fine | Luogo |
---|---|---|---|
Lunedì | 09:00 | 11:00 | Ricevimento presso lo studio situato all'ex-Istituto di Lingue. |
Note: