Offerta Didattica
CHIMICA
CHEMIOMETRIA
Classe di corso: L-27 - Scienze e tecnologie chimiche
AA: 2019/2020
Sedi: MESSINA
SSD | TAF | tipologia | frequenza | moduli |
---|---|---|---|---|
CHIM/01 | Affine/Integrativa | Libera | Libera | No |
CFU | CFU LEZ | CFU LAB | CFU ESE | ORE | ORE LEZ | ORE LAB | ORE ESE |
---|---|---|---|---|---|---|---|
6 | 6 | 0 | 0 | 36 | 36 | 0 | 0 |
LegendaCFU: n. crediti dell’insegnamento CFU LEZ: n. cfu di lezione in aula CFU LAB: n. cfu di laboratorio CFU ESE: n. cfu di esercitazione FREQUENZA:Libera/Obbligatoria MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli ORE: n. ore programmate ORE LEZ: n. ore programmate di lezione in aula ORE LAB: n. ore programmate di laboratorio ORE ESE: n. ore programmate di esercitazione SSD:sigla del settore scientifico disciplinare dell’insegnamento TAF:sigla della tipologia di attività formativa TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio
Obiettivi Formativi
Al termine del corso, lo studente ha le basi teoriche e pratiche della Chemiometria per la Chimica Analitica. In particolare, lo studente sa applicare i principali test statistici e determinare i parametri di qualità su dati univariati, ha appreso metodi di esplorazione dei dati, sa progettare gli esperimenti mediante “DOE” e sa elaborare matrici di dati multivariati, utilizzando moderni pacchetti software matematici, statistici e chemiometrici. Lo studente sa infine applicare le abilità acquisite a problemi chimico-analitici reali sia applicativi che di ricerca.Learning Goals
After completing the course, the student has the theoretical and practical bases of Chemometrics for Analytical Chemistry. In particular, students will be able to apply the main statistical tests and determine the quality parameters of univariate data, learned data exploration methods, how to design experiments using "DOE" and how to process matrices of multivariate data, using modern mathematical, statistical and chemometric software packages. The student finally able to apply the skills acquired to real chemical-analytical problems in both application and research.Metodi didattici
Il corso prevede lezioni frontali ed esercitazioni in aula (36 ore complessive). Le lezioni frontali sono dedicate all'acquisizione dei concetti di base della Chemiometria ed all'acquisizione di strumenti informatici specifici (software per applicazioni matematiche e statistiche). Le esercitazioni nel laboratorio informatico hanno lo scopo di rendere lo studente autonomo nell'utilizzare gli strumenti della Chemiometria e capace di applicare nozioni e software alla soluzione di problemi reali di analisi chimica multivariata.Teaching Methods
The course includes lectures and classroom exercises (36 hours total). The lectures are devoted to the acquisition of the basic concepts of Chemometrics and the acquisition of specific tools (software for mathematical and statistical applications). The class exercises are designed to make the learner autonomous to use the tools of Chemometrics and able to apply knowledge and software to the real problems of multivariate chemical analysis solution.Prerequisiti
lo studente che accede a questo insegnamento deve essere in possesso di una buona preparazione nei fondamenti della chimica analitica, dai concetti teorici di base alle tecniche analitiche strumentali di base. Lo studente deve inoltre conoscere i concetti di base di statistica classica (univariata) per la chimica analitica ed algebra delle matrici.Prerequisites
students accessing this teaching must be in possession of a good grounding in the fundamentals of analytical chemistry, the basic theoretical concepts to the basic instrumental analytical techniques. The student must have knowledge about the basic concepts of combinatorics, classical statistics (univariate) for analytical chemistry and matrix algebra.Verifiche dell'apprendimento
L'esame consiste in un'interrogazione orale che verte sul programma spiegato in aula e sulle esercitazioni in aula (definizioni e dimostrazioni contenute nelle dispense di lezione). Il Docente assegna un voto all'esame orale.Assessment
The exam consists of an oral discussion which focuses on the program and classroom exercises (demonstrations and definitions contained in the lecture handouts). The teacher assigns a rating from 18 to 30 to the oral examination.Programma del Corso
I contenuti del corso riguardano l’apprendimento di concetti teorici ed applicazioni pratiche legate all’analisi di dati chimici univariati, bivariati e multivariati. La prima parte è incentrata sui dati univariati e riguarda lo studio delle principali distribuzioni di probabilità, il concetto di errore, i test di significatività, l’analisi della varianza e la calibrazione univariata. La seconda parte del corso riguarda l’esplorazione dei dati multivariati utilizzando metodi “unsupervised” come l’analisi delle componenti principali e la cluster analysis. La terza parte del corso riguarda metodi di analisi “supervised” di tipo qualitativo, come l’Analisi di Classificazione, e quantitativo, come i metodi di regressione (MCR e PLS). La quarta e ultima parte del corso mira all'apprendimento e all'applicazione del disegno sperimentale utilizzando diversi esempi. Durante tutto il corso, sarà studiato l'uso di alcuni software statistici. Programma: CENNI DI STATISTICA DI BASE. 6 ore la natura dei dati, definizione di variabile, oggetto, frequenza, probabilità. Parametri di posizione: media, moda mediana, media mobile, quantili, distribuzione gaussiana di Poisson e geometrica. Errori e parametri di dispersione: errori casuali, errori sistematici, errore assoluto, errore relativo, deviazione standard, varianza, intervalli di fiducia. INFERENZA STATISTICA.6 ore Test di significatività: t-test per il confronto tra medie o tra una media ed un valore noto, F-test per il confronto tra deviazioni standard (e.g. tra metodi), Q-test per gli outliers, chi2 -test per la verifica della normalità di una distribuzione Analisi della varianza a una via ed a due vie Parametri di qualità: limiti di rivedibilità, selettività, esattezza, precisione, incertezza di misurazione, robustezza, recupero. ESPLORAZIONE DEI DATI. 8 ore Struttura multivariata dei dati. Pretrattamento dei dati. Trasformazione delle variabili. Gestione dei dati mancanti. Analisi delle componenti principali. Grafici dei loadings. Grafici degli scores. Scelta delle componenti principali (rank analysis), per via numerica e per via grafica. Analisi dei clusters. Matrice delle distanze, matrice di similarità. Metodi gerarchici agglomerativi per l'analisi dei clusters. Dendrogrammi. ANALISI DI PROCESSO (PAT). 2 ore Uso dei modelli PCA per il controllo di processo. Carte di controllo multivariate. MODELLI E VALIDAZIONE. 8 ore Modelli. Ordine e linearità di un modello. Parametri di controllo. Validazione di un modello. Classificazione: modelli qualitativi. Matrice di confusione. Matrice delle perdite. Parametri di valutazione della classificazione. Rischio di errore di classificazione (MR%). Il metodo di classificazione K-NN. Analisi discriminante (DA). Il metodo di classificazione SIMCA. Il metodo di classificazione CART. Calibrazione: regressione lineare. Metodo MLR. Leverages. Coefficienti di regressione. Parametri di valutazione di un modello di regressione. Coefficiente di correlazione. Coefficiente di predizione. Errore standard della stima. Metodi diagnostici per un modello di regressione. Metodo di Regressione in Componenti Principali (PCR). Metodo Partial Least Squares(PLS). Esempi pratici di calibrazione mediante regressione PLS: spettrofotometria, voltammetria, cromatografia-spettrometria di massa. PROGETTAZIONE DI ESPERIMENTI “DOE” 6 ore Full factorial design, Plackett-Burman, Central composite design. Metodi multivariati per la scelta dei campioni standard e delle variabili per la costruzione dei modelli. D-Optimal Designs. Progettazione in caso di miscele.Course Syllabus
The contents regards the learning of theoretical concepts and practical applications related to the analysis of univariate, bivariate and multivariate chemical data. The first part of the course focuses on univariate data and concerns the study of the main probability distributions, the concept of error (systematic and random), significance tests, analysis of variance and univariate calibration (calibration line). The second part of the course regards the exploration of multivariate data using "unsupervised" methods such as principal component analysis and cluster analysis. The third part of the course concerns qualitative "supervised" analysis methods, such as Classification Analysis, and quantitative, such as regression methods, such as MCR and PLS. The fourth and last part of the course aims to the learning and application of the experimental design using several examples. All along the course, the use of some statistical software will be studied. Program: BASICS OF BASIC STATISTICS. 6 hours Position parameters: mean, median, moving average, quantile, Distributions: binomial, Poisson, geometric and normal (Gaussian). Errors and dispersion parameters: random errors, systematic errors, absolute error, relative error, standard deviation, variance, confidence intervals STATISTICAL INFERENCE. 6 hours Test of significance: t-test for comparison between medium or between an average and a known value, F-test for comparison between standard deviations (eg between methods), Q-test for the verification of outliers, chi2-test for verifying the normality of a distribution. Analysis of variance: one-way and two-ways ANOVA. Quality parameters: detection limits, selectivity, accuracy, precision, measurement uncertainty, robustness, recovery DATA EXPLORATION. 8 hours Structure of multivariate data. Matrices: size, transposition, centering, covariance, correlation. Pretreatment of the data. Transformation of variables. Missing data management. Principal component analysis: eigenvalues and eigenvectors Loadings plot, Scores plot, scree plot, biplots. Choice of main components (rank analysis). Cluster analysis: matrix of distances, similarity matrix. hierarchical agglomerative methods for the analysis of the clusters. Dendrograms. PROCESS ANALYSIS (PAT). 2 hours Use of PCA models for process control. Cards multivariate control. continuous processes. Batch processes. MODELS AND VALIDATION. 8 hours Models. Order and linearity of a model. Control parameters. Validation of a model. Classification: qualitative models. confusion matrix. Matrix of losses. Classification evaluation parameters. Misclassification risk (MR%). The method of classification K-NN. Discriminant analysis (DA). Classification methods: SIMCA and CART. Calibration: quantitative models. Linear Regression method MLR. Leverages. Regression coefficients. Evaluation parameters of a regression model. Correlation coefficients. Coefficient prediction. standard error of the estimate. diagnostic methods for a regression model. Method of Principal Component Regression (PCR). Method Partial Least Squares (PLS). DESIGN OF EXPERIMENTS "DOE". 6 hours Full factorial, Plackett-Burman, Central composite design. Multivariate methods for the choice of the standard samples and of the variables for the construction of the models. D-Optimal Designs. Planning in the case of mixtures.Testi di riferimento: - Appunti delle lezioni
- Roberto Todeschini, Introduzione alla chemiometria, Edises, 1998.
- Michele Forina, Fondamenta per la chimica analitica. ISBN 9788890406461
- J.C. Miller, J.N. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson Education, 2010.
- Richard G. Brereton, Applied Chemometrics for Scientists, Wiley, 2007.
- Richard Kramer, Chemometric techniques for quantitative analysis, Marcel Dekker, 1998.
- - Software: Origin, Excel, PLS toolbox, CAT su R!
Esami: Elenco degli appelli
Elenco delle unità didattiche costituenti l'insegnamento
Docente: GABRIELE LANDO
Orario di Ricevimento - GABRIELE LANDO
Dato non disponibile