Offerta Didattica

 

INGEGNERIA ELETTRONICA E INFORMATICA

FISICA MATEMATICA

Classe di corso: L-8 - Ingegneria dell'informazione
AA: 2016/2017
Sedi: MESSINA
SSDTAFtipologiafrequenzamoduli
MAT/07BaseLiberaLiberaNo
CFUCFU LEZCFU LABCFU ESEOREORE LEZORE LABORE ESE
64.501.56036024
Legenda
CFU: n. crediti dell’insegnamento
CFU LEZ: n. cfu di lezione in aula
CFU LAB: n. cfu di laboratorio
CFU ESE: n. cfu di esercitazione
FREQUENZA:Libera/Obbligatoria
MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli
ORE: n. ore programmate
ORE LEZ: n. ore programmate di lezione in aula
ORE LAB: n. ore programmate di laboratorio
ORE ESE: n. ore programmate di esercitazione
SSD:sigla del settore scientifico disciplinare dell’insegnamento
TAF:sigla della tipologia di attività formativa
TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio

Obiettivi Formativi

Il corso si propone di fornire le nozioni fondamentali di cinematica, dinamica e statica dei sistemi materiali ed, in particolare, del corpo rigido.

Metodi didattici

La metodologia didattica prevede attività di lezione frontale ed esercitazioni.

Prerequisiti

Il corso richiede la conoscenza preliminare di trigonometria, geometria, calcolo vettoriale, differenziale ed integrale.

Verifiche dell'apprendimento

L'esame finale consiste in una prova scritta ed una prova orale, entrambe concernenti l'intero programma svolto. La prova orale è obbligatoria.

Programma del Corso

Richiami di calcolo vettoriale e matriciale Definizioni: vettore applicato, sistema di vettori applicati, risultante.- Momento polare- Momento polare risultante-Momento assiale- Teorema di Varignon- Legge di variazione del momento polare risultante al variare del polo- Invariante- Asse centrale- Coppia- Sistemi equivalenti. Operazioni elementari-Teorema di Poisson-Sistema piano- Sistema di vettori applicati paralleli- Centro di un sistema di vettori applicati paralleli- Notazione indiciale: falso monomio, simboli di Kronecker e di Levi-Civita- Operazioni tra vettori con l'uso della notazione indiciale-Cambiamento di base- Matrice di rotazione. Cinematica del punto e dei sistemi rigidi Elementi di geometria differenziale delle curve: versore tangente, normale principale, binormale, triedro di Frenet- Cinematica del punto: velocità, accelerazione, spostamenti elementari ed effettivi- Moti piani- Moto rigido- Angoli di Eulero- Formule di Poisson- Velocità angolare- Formula fondamentale della cinematica rigida- Legge di distribuzione delle accelerazioni e degli spostamenti elementari- Classificazione dei moti rigidi e loro proprietà caratteristiche- Atto di moto rigido-Teorema di Mozzi- Moti rigidi piani- Curve polari: base e rulletta. Cinematica relativa Teorema di derivazione relativa- Principio dei moti relativi- Teorema di Coriolis- Legge di composizione delle velocità angolari- Particolari moti di trascinamento- Mutuo rotolamento e puro rotolamento. Vincoli Vincoli e loro classificazione- Rappresentazione analitica- Sistemi olonomi- Grado di libertà di un sistema olonomo e parametri lagrangiani- Spostamenti possibili e virtuali. Dinamica del punto materiale Principi fondamentali della Dinamica- Classificazione delle forze- Forze conservative- Potenziale e energia potenziale- Forze fittizie- Teorema delle forze vive- Integrali primi del moto- Postulato delle reazioni vincolari- Leggi di Coulomb-Morin- Moto di un punto materiale su una superficie e su una curva- Pendolo semplice. Geometria e cinematica delle masse Massa- Baricentro di un sistema particellare e continuo- Proprietà di ubicazione del baricentro- Momento d’inerzia- Teorema di Steiner-Huygens- Legge di variazione del momento d’inerzia rispetto a rette concorrenti- Ellissoide e matrice d’inerzia- Quantità di moto, momento della quantità di moto ed energia cinetica- Energia cinetica e momento della quantità di moto di un corpo rigido con un punto fisso o con un asse fisso. Terna baricentrica- Teoremi di Koenig. Dinamica dei sistemi materiali Sistemi di forze e lavoro di un sistema di forze - Lavoro di una sollecitazione agente su un corpo rigido e su un sistema olonomo- Teorema delle forza vive- Vincoli perfetti o ideali- Equazioni Cardinali della Dinamica- Moto di un corpo rigido con un asse fisso- Equazioni di Eulero- Moti alla Poinsot. Statica del punto materiale Equilibrio di un punto materiale- Attrito Statico- Cono di attrito statico- Equilibrio di un punto materiale vincolato su una superficie o su una curva. Statica dei sistemi materiali Equazioni Cardinali della Statica- Principio dei lavori virtuali- Principio di stazionarietà del potenziale- Principio di Torricelli- Statica del corpo rigido con un asse fisso o con un punto fisso- Equilibrio dei solidi appoggiati su un piano orizzontale liscio-. Stabilità delle configurazioni di equilibrio: teorema di Dirichlet. Meccanica Analitica Forze perdute, principio di D'Alembert, equazioni di Lagrange, integrali primi del moto.

Testi di riferimento: P.BISCARI, T. RUGGERI, G. SACCOMANDI, M. VIANELLO, Meccanica razionale per l'ingegneria. Ed. Monduzzi-Bologna; M. FABRIZIO, La Meccanica Razionale e i suoi metodi matematici. Ed. Zanichelli-Bologna; G. GRIOLI, Lezioni di Meccanica Razionale. Ed. Cortina-Padova; A. STRUMIA, Meccanica Razionale. Ed. Nautilus-Bologna. T. RUGGERI, Richiami di calcolo vettoriale e matriciale. Ed. Pitagora-Bologna. A. MURACCHINI, T. RUGGERI, L. SECCIA, Esercizi e temi d'esame di Meccanica razionale. Ed. Esculapio-Bologna.

Elenco delle unità didattiche costituenti l'insegnamento

FISICA MATEMATICA

Docente: GIOVANNA VALENTI

Orario di Ricevimento - GIOVANNA VALENTI

GiornoOra inizioOra fineLuogo
Martedì 11:30 13:30Blocco C 9° piano
Giovedì 09:00 11:00Blocco C 9° piano
Note:
  • Segui Unime su:
  • istagram32x32.jpg
  • facebook
  • youtube
  • twitter
  • UnimeMobile
  • tutti